MECÃNICA GENRALIZADA GRACELI :


G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ μ / h/c ψ(xt [x  t ]..

EM :


Energia do fotão (português europeu) ou energia do fóton (português brasileiro) é a energia carregada por um único fóton. A quantidade de energia está diretamente relacionada à frequência e ao comprimento de onda eletromagnética do fóton. Quanto maior for a frequência do fóton, maior a sua energia. Da mesma forma, quanto maior for o comprimento de onda do fóton, menor a sua energia.

A energia do fóton é uma função somente do comprimento de onda. Outros fatores, como intensidade da radiação, não afetam a energia do fóton. Em outras palavras, dois fótons de luz com a mesma cor e, portanto, o mesmo comprimento de onda, terão a mesma energia do fóton, mesmo se um for emitido por uma vela de cera e o outro for emitido pelo Sol.

A energia do fóton pode ser representada por qualquer unidade de energia. Umas das unidades mais comuns para denotar a energia do fóton é elétron-volt (eV) e joule (bem como seus múltiplos, como microjoule). Como um joule é igual a 6,24 × 1018 eV, as unidades maiores podem ser mais úteis para denotar a energia de fótons com frequências e energias mais altas, como o raio gama, ao contrário dos fótons de menor energia, como os da região do espectro eletromagnético de radiofrequência.

Se os fótons, de fato, não possuem massa, a energia do fóton não seria relacionada à massa através da equivalência E = mc2. Os únicos dois tipos de tais partículas sem massa observados são os fótons e os glúons.[1] Entretanto, o postulado de que os fótons não possuem massa é baseado na crise que resulta de outras teorias em mecânica quântica. Para que outras teorias, como a invariância de gauge e a chamada "renormalização" sobrevivam sem considerável revisão, os fótons devem permanecer sem massa no domínio das atuais equações.[2] A alegação é contestada em outros meios.[3] Diz-se que fótons possuem massa relativística (isto é, massa resultante do movimento de um corpo material em relação a outro). Além disso, algumas hipóteses propõem que toda massa ou "massa de repouso" pode ser composta de massa relativística acumulada, secundária ao movimento, uma vez que nenhum corpo material esteja ou possa estar em "repouso" em relação a todos os campos. Nessa hipótese, assim como o movimento se torna zero, a massa também se torna zero. Por outro lado, os fótons possuem movimento e energia variável em relação à frequência e ao comprimento de onda, sugerindo que várias formas do foton têm, cada uma, equivalência de massa diferente. Assim, a equação "E = mc2" mostraria que a massa e o movimento são conceitos indissociáveis e e fundamentalmente substituíveis para toda a matéria.[4]

Fórmula

equação para a energia do fóton[5] é

/ G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

Onde E é a energia do fóton, h é a constante de Planckc é a velocidade da luz no vácuo e λ é o comprimento de onda do fóton. Como h e c são ambos constantes, a energia do fóton varia diretamente em relação ao comprimento de onda λ.

Para encontrar a energia do fóton em eV, usando o comprimento de onda em micrômetros, a equação é aproximadamente

 / G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

Portanto, a energia do fóton de comprimento de onda de 1 μm, próximo à da radiação infravermelho, é aproximadamente 1,2398 eV.

Como , onde f é a frequência, a equação da energia pode ser simplificada para

 / G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

Esta equação é conhecida como a relação de Planck-Einstein. Substituindo h por seu valor em J⋅s e f por seu valor em hertz resulta na energia do fóton em joules. Portanto, a energia do fóton à frequência de 1 Hz é 6,62606957×10−34 joules ou 4,135667516×10−15 eV.

Em química e engenharia óptica,

 / G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

é usada onde h é a constante de Planck e a letra grega ν (ni) é a frequência do fóton.[6]




Absorção molecular

Uma molécula típica, , possui vários níveis de energia diferentes. Quando uma molécula absorve um fóton, sua energia aumenta em uma quantidade igual à da energia do fóton. A molécula então entra em um estado excitado.

 
/ G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ




Ondas eletromagnéticas

Representação esquemática de uma onda eletromagnética linearmente polarizada produzida por um dipolo elétrico oscilante (à esquerda). A onda se propaga ao longo do eixo horizontal com comprimento de onda λ (ao centro). O campo elétrico, o campo magnético e o vetor de onda são representados, respectivamente, em azul, vermelho e preto (à direita).

As ondas eletromagnéticas primeiramente foram previstas teoricamente por James Clerk Maxwell e depois confirmadas experimentalmente por Heinrich Hertz. Maxwell notou as ondas a partir de equações de electricidade e magnetismo, revelando sua natureza e sua simetria. Faraday mostrou que um campo magnético variável no tempo gera um campo eléctrico. Maxwell mostrou que um campo eléctrico variável com o tempo gera um campo magnético, com isso há uma autossustentação entre os campos eléctrico e magnético. Em seu trabalho de 1862, Maxwell escreveu:

"A velocidade das ondas transversais em nosso meio hipotético, calculada a partir dos experimentos electromagnéticos dos Srs. Kohrausch e Weber, concorda tão exactamente com a velocidade da luz, calculada pelos experimentos óticos do Sr. Fizeau, que é difícil evitar a inferência de que a luz consiste nas ondulações transversais do mesmo meio que é a causa dos fenômenos eléctricos e magnéticos."[carece de fontes]

Ondas harmônicas

Uma onda harmônica é uma onda com a forma de uma função senoidal, como na figura, no caso de uma onda que se desloca no sentido positivo do eixo dos .

A distância  entre dois pontos consecutivos onde o campo e a sua derivada têm o mesmo valor, é designada por comprimento de onda (por exemplo, a distância entre dois máximos ou mínimos consecutivos). O valor máximo do módulo do campo, , é a sua amplitude.

Onda Harmônica

O tempo que a onda demora a percorrer um comprimento de onda designa-se por {período}, .

O inverso do período é a frequência , que indica o número de comprimentos de onda que passam por um ponto, por unidade de tempo. No sistema SI a unidade da frequência é o hertz, representado pelo símbolo Hz, equivalente a .

No caso de uma onda eletromagnética no vácuo, a velocidade de propagação é  que deverá verificar a relação:

 / G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

A equação da função representada na figura acima é:

 / G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

onde a constante  é a fase inicial. Essa função representa a forma da onda num instante inicial, que podemos admitir .

Para obter a função de onda num instante diferente, teremos que substituir  por , já que a onda se propaga no sentido positivo do eixo dos , com velocidade .

 / G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

usando a relação entre a velocidade e o período, podemos escrever:

 / G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

Se substituirmos , obteremos a equação que descreve o campo elétrico na origem, em função do tempo:

 / G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

assim, o campo na origem é uma função sinusoidal com período  e amplitude . O campo em outros pontos tem exatamente a mesma forma sinusoidal, mas com diferentes valores da fase.[4]

Propriedades

Os campos eléctrico e magnético obedecem aos princípios da superposição de ondas, de modo que seus vectores se cruzam e criam os fenômenos da refracção e da difração.[carece de fontes] Uma onda eletromagnética pode interagir com a matéria e, em particular, perturbar átomos e moléculas que as absorvem, podendo os mesmos emitir ondas em outra parte do espectro.

Como qualquer fenômeno ondulatório, as ondas eletromagnéticas podem interferir entre si. Sendo a luz uma oscilação, ela não é afetada pela estática eléctrica ou por campos magnéticos de uma outra onda eletromagnética no vácuo. Em um meio não linear, como um cristal, por exemplo, interferências podem acontecer e causar o efeito Faraday, em que a onda pode ser dividida em duas partes com velocidades diferentes.[carece de fontes]

Na refracção, uma onda, transitando de um meio para outro de densidade diferente, tem alteradas sua velocidade e sua direcção (caso esta não seja perpendicular à superfície) ao entrar no novo meio. A relação entre os índices de refracção dos dois meios determina a escala de refração medida pela lei de Snell:

 
/ G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

Nesta equação, i é o ângulo de incidência, N1 é o índice de refração do meio 1, r é o ângulo de refração, e N2 é o índice de refração do meio 2.

A luz se dispersa em um espectro visível porque é reflectida por um prisma, devido ao fenômeno da refração. As características das ondas eletromagnéticas demonstram as propriedades de partículas e da onda ao mesmo tempo, e se destacam mais quando a onda é mais prolongada.

Modelo de onda eletromagnética

Um importante aspecto da natureza da luz é a frequência uma onda, sua taxa de oscilação. É medida em hertz, a unidade SIU de frequência, na qual um hertz (1,00 Hz) é igual a uma oscilação por segundo. A luz normalmente tem um espectro de frequências que, somadas, juntos formam a onda resultante. Diferentes frequências formam diferentes ângulos de refração. Uma onda consiste nos sucessivos baixos e altos, e a distância entre dois pontos altos ou baixos é chamado de comprimento de onda. Ondas eletromagnéticas variam de acordo com o tamanho, de ondas de tamanhos de prédios a ondas gama pequenas menores que um núcleo atômico. A frequência é inversamente proporcional ao comprimento da onda, de acordo com a equação:

/ G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

Nesta equação, v é a velocidade, λ (lambda) é o comprimento de onda, e f é a frequência da onda.

Na passagem de um meio material para outro, a velocidade da onda muda, mas a frequência permanece constante. A interferência acontece quando duas ou mais ondas resultam em um novo padrão de onda. Se os campos tiverem as componentes nas mesmas direções, uma onda "coopera" com a outra (interferência construtiva); entretanto, se estiverem em posições opostas, pode haver uma interferência destrutiva.

Modelo de partículas

Um feixe luminoso é composto por pacotes discretos de energia, caracterizados por consistirem em partículas denominadas fotões (português europeu) ou fótons (português brasileiro). A frequência da onda é proporcional à magnitude da energia da partícula. Como os fótons são emitidos e absorvidos por partículas, eles actuam como transportadores de energia. A energia de um fóton é calculada pela equação de Planck-Einstein:

/ G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

Nesta equação, E é a energia, h é a constante de Planck, e f é a frequência.

Se um fóton for absorvido por um átomo, ele excita um electrão (português europeu) ou elétron (português brasileiro), elevando-o a um alto nível de energia. Se o nível de energia é suficiente, ele pula para outro nível maior de energia, podendo escapar da atração do núcleo e ser liberado em um processo conhecido como fotoionização. Um elétron que descer ao nível de energia menor emite um fóton de luz igual a diferença de energia. Como os níveis de energia em um átomo são discretos, cada elemento tem suas próprias características de emissão e absorção.[carece de fontes]






Na mecânica estatística quântica, a entropia de von Neumann, nomeada em homenagem a John von Neumann, é a extensão dos conceitos clássicos de entropia de Gibbs ao campo da mecânica quântica.[1] O formalismo matemático abrangente da mecânica quântica foi apresentado pela primeira vez no livro "Mathematische Grundlagen der Quantenmechanik" publicado em 1932 de Johann von Neumann.[2] Para um sistema mecânico quântico descrito por uma matriz densidade ρ, a entropia de von Neumann és[3][4]

 
/ G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

onde  denota o traço e ln denota o logaritmo (natural) da matriz. E se ρ é escrito em termos de seus autovetores  como

 
/ G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

então a entropia de von Neumann é meramente[3]

 
/ G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

Nesta forma, S pode ser visto como equivalente à entropia teórica de Shannon da informação.[3]




Na mecânica quânticaequação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.

A equação propriamente dita é dada por:

/ G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ

na qual m é a massa de repouso do elétron, c é a velocidade da luzp é o operador momentum linear  é a constante de Planck divida por 2πx e t são as coordenadas de espaço e tempo e ψ(xt) é uma função de onda com quatro componentes.

Comentários

Postagens mais visitadas deste blog